

NOTES OF

ARTIFICIAL
INTELLIGENCE

SEARCH, CSP, DECISION MAKING, BAYESIAN
NETWORKS, PLANNING

(Version 03/07/2021)

Edited by:
Stefano Ivancich

CONTENTS

1. Agents .. 1

1.1. Agents and environments ... 1

1.2. Agent types ... 2

2. Solving problems by searching .. 5

2.1. Problem-solving agents ... 5

2.2. Problem formulation ... 6

2.3. Uninformed search algorithms ... 7

2.3.1. Infrastructure for search algorithms ... 8

2.4. Uninformed Search strategies ... 9

2.5. Informed search algorithms .. 12

2.6. Local search algorithms ... 14

2.7. Stable matching problem .. 17

3. Constraint satisfaction problems .. 21

3.1. Problem Definition .. 21

3.2. Backtracking search... 23

3.3. Consistency techniques ... 25

3.4. Local search ... 27

3.5. Structure of the problems ... 29

3.6. Soft Constraints satisfaction problems ... 32

3.6.1. C-semiring framework for Soft CSPs ... 32

3.6.2. Fundamental operations with soft constraints 35

3.6.3. Systematic search: Branch and Bound .. 36

4. Multi-agent decision making ... 39

4.1. Preferences ... 39

4.2. Voting theory (social choice) ... 40

4.3. Multi-agent systems .. 41

4.4. Formalism to model preferences .. 42

5. Bayesian network .. 45

5.1. Syntax .. 45

5.2. Inference in Bayesian Networks ... 46

5.2.1. Exact inference by enumeration ... 46

5.2.2. Exact inference by variable elimination .. 47

5.2.3. Complexity of Exact Inference .. 49

6. Planning ... 51

6.1. Representations .. 52

6.2. Planning problem .. 54

QUESTIONS FROM PAST EXAMS ... 56

This document was written by students with no intention of replacing university materials. It is a
useful tool for the study of the subject but does not guarantee an equally exhaustive and complete
preparation as the material recommended by the University.
The purpose of this document is to summarize the fundamental concepts of the notes taken during
the lesson, rewritten, corrected and completed by referring to the to be used as a "practical and
quick" manual to consult. There are no examples and detailed explanations, for these please refer
to the cited texts and slides.

You can find flashcards of exams questions on: https://www.brainscape.com/p/3YF5P-LH-AUGGM

If you find errors, please report them here:
www.stefanoivancich.com
ivancich.stefano.1@gmail.com
The document will be updated as soon as possible.

https://www.brainscape.com/p/3YF5P-LH-AUGGM
http://www.stefanoivancich.com/
mailto:ivancich.stefano.1@gmail.com

1

1. Agents

1.1. Agents and environments
Agent: a system that perceive its environment through sensors and act upon it through actuators
Agent function: maps perception histories to actions 𝑓: 𝑃∗ → 𝐴
Agent program: runs on the physical architecture to produce 𝑓
Performance measure: An objective criterion for success of an agent's behavior
Autonomous agent: if its behavior is determined by its own experience (with ability to learn and
adapt)
Rational agent: For each possible percept sequence, it should select an action that is expected to
maximize its performance measure, given the evidence provided by the percept sequence and
whatever built-in knowledge the agent has.
Ideally: equip an agent with some prior knowledge and the ability to learn

Task environments: the “problems” for which artificial agents are “solutions”
Are specified by PEAS (Performance measure, Environment, Actuators, Sensors). Types:

• Fully observable vs partially observable: fully means the agents have access to the complete
state of the environment at each point in time.

• Deterministic vs stochastic:
o Deterministic: next state of the environment is completely determined by the

current state and the action executed by the agent.
o Stochastic: there is uncertainty on the next state and it is expressed with probabilities
o Non-deterministic: there is uncertainty on the next state but no probabilities are

available.
o Uncertain: not fully observable and non-deterministic

• Episodic vs sequential:
o Episodic: agent's experience is divided into atomic "episodes”, Each episode consists

of the agent perceiving and performing a single action. The choice of action in each
episode depends only on the episode itself.

o Sequential: a current decision may affect future decisions

• Static vs dynamic:
o Static: environment is unchanged while an agent is deliberating
o Dynamic: continuously asking the agent what it wants to do
o Semidynamic: the environment itself does not change with the passage of time but

the agent's performance score does.

• Discrete vs continuous: A finite number of distinct, clearly defined states, percepts and
actions. Applies also to time.

• Single agent vs multiagent. Multiagent can be competitive or cooperative.

• Known vs unknown: depends on the knowledge of the agent or the designer of the agent of
the rules governing the environment.
In a known environment for each action there is an outcome (if deterministic) or a
probability distribution over the possible outcomes (if stochastic).
known and partially observable (for example, a card game)
unknown and fully observable (a new videogame)

The environment type largely determines the agent design.
The real world is partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

2

1.2. Agent types
Agent is completely specified by the agent function mapping percept sequences to actions.
Agent = architecture + program
Agent Architecture:

• feeds the percepts from the sensors to the program.

• runs the program.

• feeds the actions to the actuators.
Agent programs we design have the same skeleton.

• They take the current percept as input from the sensors.

• They return an action to the actuators.
Agent program ≠ Agent function

• Agent program: takes the current percept as input.

• Agent function: takes the entire percept history.

• If the agent’s actions need to depend on the entire percept sequence, the agent will have to
remember the percepts.

Aim of AI: design agent programs that implement the agent functions concisely.

The TABLE-DRIVEN-AGENT program

• invoked for each new percept

• retains the complete percept sequence in memory

• returns an action each time
function TABLE-DRIVEN-AGENT(percept) returns an action

persistent:

• percepts, a sequence initially empty

• table, a table of actions, indexed by percept sequences, initially

fully specified

append percept to the end of percepts

action ← LOOKUP(percepts, table)

return action

Drawbacks:

• Invoked for each new percept

• Huge table (chess: 10150 entries)

• Takes a long time to build the table

• Even with learning, need a long time to learn the table entries.

• Who knows how to build it?!

Four basic types of agents in order of increasing generality:

• Simple reflex agents: select the action considering only the current percept.

• Model-based reflex agents: maintain internal state to track aspects of the world that are
not evident in the current percept.

• Goal-based agents: act to achieve their goals.

• Utility-based agents: try to maximize their own expected “happiness”.

Agent programs consist of various components each can represent the environment in three ways:

• Atomic representation: Each state of the world is indivisible, it has no internal structure.
Example: the algorithms underlying search.

• Factored representation: Each state contains a fixed set of variables (or attributes), Each
variable can have a value. Two different factored states can share some variables.

3

Example: constraint satisfaction algorithms, planning

• Structured representation: Each state contains objects (with variables with values) and
relations with other objects, Example: knowledge-based learning, natural language
understanding.

A more expressive representation can capture at least as concisely everything a less expressive one
can capture plus some more.

4

5

2. Solving problems by searching

2.1. Problem-solving agents
Intelligent agents are supposed to maximize their performance measure. Achieving this is
sometimes simplified if the agent can select a goal and aim to satisfy it.

Agent: Problem-solving agents (is a Particular type of goal-based agent)
Representation: atomic (the states have no internal structure visible to the problem-solving
algorithm)
Environment:

• observable

• known

• deterministic
Solution: fixed sequence of actions
Search: process of looking for such a sequence
Search algorithm:

• input: problem

• output: an action sequence
The sequence in output can then be executed without worrying about the environment.

The agent execute repeatedly:

• Formulates a goal and a problem.

• Searches for a sequence of actions that would solve the problem.

• Executes the actions one at a time.

6

2.2. Problem formulation

A problem can be defined formally by:

• Initial state: of the agent

• Actions available to the agent
o Given a state 𝑠, ACTIONS(s) returns the set of actions that can be executed in 𝑠
o We say that each of these actions is applicable in 𝑠

• Transition model: description of what each action does.
o RESULT(s,a) returns the state obtained from doing action 𝑎 in state 𝑠
o Successor: any state reachable from a given state by a single action

• Goal test: allows to check if a state is a goal.

• Path cost: numeric value associated to each path reflecting the desired performance
measure. We assume path costs to be additive: sum of step costs.
Step cost 𝑐(𝑥, 𝑎, 𝑦): for going from state 𝑥 to state 𝑦 by performing action 𝑎. Assumed to be
≥ 0.

Solution: a sequence of actions (path) leading from the initial state to a goal state.
Optimal solution: a solution with minimal path-cost.

Problem state space = (initial state, actions, transition model)
Is the set of all states reachable from the initial state by any sequence of actions.
can be depicted as a directed graph:

• nodes: states

• edges: actions

• path: sequence of states connected by a sequence of actions.

Abstraction: process of removing details.
Real world is absurdly complex so the state space must be abstracted for problem solving.

• (Abstract) state = set of real states

• (Abstract) action = complex combination of real actions

• (Abstract) solution = set of real paths that are solutions in the real world
Valid abstraction: if we can expand any abstract solution into a solution in the more detailed world.

7

2.3. Uninformed search algorithms

They have no information about the problem other the definition.
Possible sequences of actions from initial state form a search tree:

• Root: initial state

• Nodes: states

• Branches: actions
The same state can appear multiple time.
Outgoing edges from a node corresponds to all possible actions available in the state represented
by the node.

Tree search algorithm:

Leaf node: a node with no children in the tree
Frontier: The set of all leaf nodes available for expansion at any given point
Redundant paths: whenever there is more than one way to get from one state to another.
Loopy paths: special case of redundant paths.

To avoid exploring redundant paths TREE-SEARCH algorithm is augmented with explored set that
remembers every expanded node.
Graph search algorithm:

8

2.3.1. Infrastructure for search algorithms
For each node 𝑛 of the tree, we have a structure with:

• n.STATE: the state in the state space to which the node corresponds

• n.PARENT: the node in the search tree that generated this node

• n.ACTION: the action that was applied to the parent to generate the node

• n.PATH-COST: the cost, traditionally denoted by 𝑔(𝑛), of the path from the initial state to
the node, as indicated by the parent pointers.

A state corresponds to a configuration of the world.
A node is a data structure used to represent the search tree.

Nodes are stored in a queue whose operations are: isEmpty, pop, insert.
Three common queue variants:

• FIFO queue: which pops the oldest element of the queue

• LIFO queue: which pops the newest element of the queue

• Priority queue: which pops the element of the queue with the highest priority according to
some ordering function

Search strategy is defined by picking the order of node expansion
Performances are measured:

• completeness: does it always find a solution if one exists?

• time complexity: number of nodes generated/expanded

• space complexity: maximum number of nodes in memory

• optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of

• 𝒃: branching factor of the search tree (i.e., maximum number of successors of any node)

• 𝒅: depth of the least-cost solution

• 𝒎: maximum depth of the state space

9

2.4. Uninformed Search strategies
Uninformed strategies use only the information available in the problem definition.

2.4.1. Breadth-first search
Expand shallowest unexpanded node.

Implementation: frontier is a FIFO queue, i.e., new successors go at end
Goal test is applied to each node when it is generated rather than when it is selected for expansion.

Properties:

• Completeness: only if 𝑏 is finite

• Optimality: only if cost = 1 per step

• Time: 𝑂(𝒃𝒅)

• Space: 𝑂(𝒃𝒅) keeps every generated node in memory

2.4.2. Uniform-cost search
Expand least-cost unexpanded node. Equivalent to breadth-first if step costs all equal.
Implementation:

• frontier = priority queue ordered by path cost 𝑔(𝑥)

• goal test performed at expansion time
Properties:

• Completeness: if stepcost ≥ 𝜖

• Optimality: Yes, nodes expanded in increasing order of 𝑔(𝑛)

• Time, Space: 𝑂(𝑏⌊𝐶∗/𝜖⌋+1) where 𝐶∗ is the cost of the optimal solution and each action costs

at least 𝜖

2.4.3. Depth-first search
Expand deepest unexpanded node.
Implementation: frontier = LIFO queue, i.e., put successors at front
Properties:

• Completeness: only in finite state spaces

• Optimality: No

• Time: 𝑂(𝒃𝒎), terrible if 𝑚 is much larger than 𝑑

• Space: 𝑂(𝒃𝒎)

10

2.4.4. Depth-limited search
To avoid the problem of the illimited trees, we use depth-first search with depth limit 𝐿.
Properties:

• Completeness: only if 𝐿 ≥ 𝐷

• Optimality: No

• Time: 𝑂(𝒃𝒍)

• Space: 𝑂(𝒃𝒍)
Can terminate with two kinds of failure: no solution exists or no solution within the depth limit.
Incomplete if 𝑙 < 𝑑 (the shallowest goal is beyond the depth limit)
Non-optimal if 𝑙 > 𝑑

2.4.5. Iterative deepening search
It repeatedly applies depth-limited search with increasing limits
It terminates if the depth-limited search returns: solution, or failure, meaning that no solution exists.
Properties:

• Completeness: only if 𝑏 is finite

• Optimality: only if step cost = 1

• Time: 𝑂(𝒃𝒅)

• Space: 𝑂(𝒃𝒅)

11

Uninformed search summary:
Breadth-first search expands the shallowest nodes first

• Complete (if b finite)

• Optimal for unit step costs

• But exponential space complexity
Uniform-cost search expands the node with lowest path cost, 𝑔(𝑛)

• Optimal for general step costs
Depth-first search expands the deepest unexpanded node first

• Neither complete nor optimal

• But linear space complexity

• Depth-limited search adds a depth bound
Iterative deepening search calls depth-first search with increasing depth limits until a goal is found

• Complete (if 𝑏 finite)

• Optimal for unit step costs

• Time complexity comparable to breadth-first search

• Linear space complexity

12

2.5. Informed search algorithms
Use problem-specific knowledge to speed up the search process.

Best-first search: Node is chosen for expansion based on an evaluation function 𝒇(𝒏) that is a cost
estimate, so is expanded the node with lowest 𝒇(𝒏) first.
A component of 𝑓 is Heuristic function 𝒉(𝒏) = estimate of cost of the cheapest path from the state
of the node 𝑛 to a goal state.

• depends only on the state associated with 𝑛

• ℎ(𝑛) is non negative

• ℎ(𝑛) = 0 at every goal state
Special cases of Best first search: greedy, A*

2.5.1. Greedy best-first search
Expands the node that appears to be closest to goal. 𝑓(𝑛) = ℎ(𝑛)

Properties:

• Completeness: No, can be trapped in dead ends.

• Optimality: No

• Time: 𝑂(𝒃𝒎), but a good heuristic can give dramatic improvement

• Space: 𝑂(𝒃𝒎), keeps all nodes in memory

2.5.2. A* search
Avoid expanding paths that are already expensive.
𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

• 𝑔(𝑛) = path cost from the start node to node 𝑛

• ℎ(𝑛) = estimated cost of the cheapest path from 𝑛 to goal

• 𝑓(𝑛) = estimated cost of the cheapest solution through 𝑛
We expand the node with lowest 𝑓(𝑛)

Properties:

• Completeness: yes, unless there are infinitely many nodes with 𝑓 ≤ 𝑓(𝐺)

• Optimality: Yes

• Time: 𝑂(𝒃𝒎)

• Space: 𝑂(𝒃𝒎), keeps all nodes in memory

2.5.3. Heuristics
Admissible Heuristics: ℎ is admissible if for every node 𝑛 ℎ(𝑛) ≤ ℎ∗(𝑛) where ℎ∗(𝑛) is the true cost
form 𝑛 to goal.
It never overestimates the cost to reach the goal.

If ℎ is admissible, A* using TREE-SEARCH is optimal. (Proof lecture 7)

Consistent heuristics: ℎ is consistent if for every node 𝑛, for every successor 𝑛′ of 𝑛 generated by
an action 𝑎, ℎ(𝑛) ≤ 𝑐(𝑛, 𝑎, 𝑛′) + ℎ(𝑛′)

13

Consistency implies admissibility.

If ℎ is consistent, A* using TREE-SEARCH is optimal.

ℎ2 dominates ℎ1 if ℎ2(𝑛) ≥ ℎ1(𝑛) for all node 𝑛

ℎ2 is better than ℎ1 for search: this means that ℎ1 will expand all the nodes ℎ2 expands and possibly
more.

Relaxed problem: a problem with fewer restrictions on the actions.

• A superset of actions are available from each state

• The graph of the relaxed problem is a supergraph of the original

• Any optimal solution of the original problem is also a solution of the relaxed problem.

• The cost of an optimal solution of the relaxed problem may be the same or lower of the cost
of an optimal solution of the original problem

• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original
problem.

• Admissible heuristics can be derived from the exact solution cost of a relaxed version of the
problem.

14

2.6. Local search algorithms
In many optimization problems the path from the start node to the goal is irrelevant we care just
about the goal state.
They keep a single node and move to adjacent nodes.
Useful for solving optimization problems, where the goal is to find the best state according to an
objective function.

State space = set of "complete" configurations
Find configuration satisfying constraints.

Local search algorithms explore the state-space landscape.
State-space landscape: it has a location (defined by the state) and an elevation (defined by the value
of heuristic cost function or objective function).
The aim is to find: a global minimum (lowest valley) if elevation corresponds to cost or a global
maximum (highest peak) if elevation corresponds to objective function.

2.6.1. Hill-climbing search
Assume the elevation corresponds to the objective function.
Modifies the current state to try to improve it.
At each steps: Picks a neighbor with the highest value. (Usually chooses at random among neighbors
with maximum value)
Terminates when it reaches a “peak” where no neighbor has a higher value.

Problem: often gets stuck in

• Local maxima: a peak that is higher than each of its neighboring states but lower than the
global maximum.

• Plateau: a flat area of the state-space landscape. Flat local maximum, from which no
progress is possible or a shoulder, from which progress is possible.

15

Variants:

• Stochastic hill climbing: chooses at random from the set of all improving neighbors

• First-choice hill climbing: jumps to the first improving neighbor found.

• Random-restart hill climbing: series of hill climbing runs until a goal is found. It will find a
good solution very quickly.

Hill-climbing algorithm that never makes “downhill” moves toward states with lower value is
incomplete because it can get stuck on a local maximum.
Purely random walk: moving to a successor chosen uniformly at random from the set of successors
is complete but extremely inefficient.
Simulated annealing idea: to combine hill climbing with a random walk that yields both efficiency
and completeness.

2.6.2. Simulated annealing search
Version of stochastic hill climbing where some downhill moves are allowed.
If the move improves the situation is always accepted, otherwise is accepted with some probability
less than 1 that decrease exponentially over time.
Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency.

One can prove: If T decreases slowly enough, then simulated annealing search will find a global
optimum with probability approaching 1.

2.6.3. Local beam search
Keep track of 𝑘 states rather than just one.

• Start with 𝑘 randomly generated states.

• At each iteration all the successors of all 𝑘 states are generated

• If any one is a goal state the algorithm stops, Else select the 𝑘 best successors from the
complete list and repeat (they could be all successors of the same node).

16

2.6.4. Genetic algorithms
Beam search variant, that is based on 5 steps:

• Initial population: Start with 𝑘 randomly generated states (population). Every state is
represented as a string over a finite alphabet (often a string of 0s and 1s or digits).

• Fitness function: Each state is associated to a value via an evaluation function. Returns
higher values for better states.

• Selection: random choice of 2 pairs on the basis of the fitness function.

• Crossover: For each pair to be mated, a crossover point is chosen randomly from the
positions in the string.

• Mutation: Each location is subject to random mutation with a small independent probability.

17

2.7. Stable matching problem

Multi agent system: collection of multiple intelligent agents which interact.
Ideally, we would like for the intelligent agents which we have designed so far to be able to
communicate and interact with other agents.
We take inspiration from groups of humans: economics, game theory, and social choice.

Computational social choice: an interdisciplinary field at the interface of: Artificial intelligence,
Economics, Voting theory, Game Theory, Social Choice.
We will see one problem in this area: matching problems, that are a mathematical abstraction of
two-sided markets.

Stable Matching Problems

• Two sets of agents

• Agents of one set express preferences over agents of the other set

• Goal: to choose a matching among the agents of the two sets based on their preferences
Matching: set of pairs (𝐴1, 𝐴2), where 𝐴1 comes from the first set and 𝐴2 comes from the
second set

Practical scenarios: Matching students with schools, Matching doctors with hospitals, Matching
kidney donors and patients, Matching sailors to ships, Job hunting.

2.7.1. Stable Marriage formulation
Two sets of agents: men and women
Idealized model: Same number of men and women, All men totally order all women, and viceversa

Marriage: is a one-to-one correspondence between men and women
Idealization: everyone marries at the same time
Blocking pair: pair (𝑚, 𝑤), where 𝑚 is a man and 𝑤 is a woman such that:

• the marriage contains (𝑚, 𝑤’) and (𝑚’, 𝑤), but

• 𝑚 prefers 𝑤 to 𝑤’

• 𝑤 prefers 𝑚 to 𝑚’

Stable Marriage: a marriage with no pair (man, woman) not married to each other that would prefer
to be together. OR marriage with no blocking pairs.
Idealization: assumes no cost in breaking a match

Given any stable marriage problem:

• There is at least one stable marriage.

• There may be many stable marriages especially in large AI domains.

18

2.7.2. Gale Shapley algorithm

Properties:

• Time 𝑂(𝑛2): Each of 𝑛 men can make at most 𝑛 proposals.

• Terminates with everyone married.

• Finds man optimal solution: There is no stable matching in which any man does better.

• Finds woman pessimal solution: In all stable marriages, every woman does at least as well
or better.

• Terminates with a stable marriage. Proof:

Other stable marriages: Other algorithms find “fairer” marriages.
Ex.: stable marriage which minimizes the maximum Regret. (regret of a man/woman = distance
between his partner in the marriage and his most preferred woman/man)

2.7.3. Extensions
Extensions: Ties in preferences
Preference orderings: total orders with ties
Stability

• weakly stable marriage: no un-matched couple such that each one strictly prefers the other
to the current partner.

• strongly stable marriage: no un-matched couple such that one strictly prefers the other, and
the other likes it as much or more as the current partner.

Existence

• Strongly stable marriage may not exist
𝑂(𝑛4) algorithm for deciding existence

• Weakly stable marriage always exists
Just break ties arbitrarily, Run GS, resulting marriage is weakly stable.
Polynomial complexity

19

Extensions: Incomplete preferences

• Model unacceptability of an option

• More possible blocking pairs

• (𝑚, 𝑤) blocking pair if
o 𝑚 and 𝑤 are unmatched and do not find each other unacceptable, or
o 𝑚, 𝑤 both prefer each other to current partners, or
o one of the two is matched but acceptable to the other and prefers the other who is

unmatched

• GS algorithm Extends easily, Polynomial complexity

• The set of unmatched elements is the same in every stable marriage

Extensions: ties & incomplete prefs
Weakly stable marriages may have different sizes, Unlike with just ties where they are all complete
Or with just incompleteness where the cardinality is fixed.
Finding weakly stable marriage of maximal cardinality is NP-hard. Even if only men declare ties Ties
are of most of length two, The whole list is a tie.

Strategy proofness
GS is strategy proof (that is, non-manipulable) for men

• Assuming male optimal algorithm

• No man can do better than the male optimal solution
However, women can profit from lying (that is, women can obtain a better partner by expressing
different preferences from the true ones)

• Assuming male optimal algorithm is run

• Assuming they know complete preference lists
GS can be manipulated: Every stable marriage procedure (that is, every procedure that returns a
stable marriage) can be manipulated if preference lists can be incomplete.

20

21

3. Constraint satisfaction problems

In standard search problems, states are:

• Atomic (“black box” with no internal structure)

• Evaluated by domain-specific heuristics.

• Tested to see whether they are goal states.

In CSPs: a factored representation for each state

• State is defined by variables 𝑋𝑖 with values from domain 𝐷𝑖

• Goal test is a set of constraints specifying allowable combinations of values for subsets of
variables.

• Solution: one value for each variable that satisfies all the constraints

Allows useful general-purpose algorithms to solve complex problems

• with more power than standard search algorithms

• general-purpose heuristics rather than problem-specific heuristics

Algorithms for solving CSPs: eliminate large portions of the search space all at once by identifying
variable/value combinations that violate the constraints.

3.1. Problem Definition
CSP Definition:

• Set of variables 𝑋 = {𝑋1, … , 𝑋𝑛}

• Set of domains 𝐷 = {𝐷1, … , 𝐷𝑛}
o 𝐷𝑖 consists of a set of allowable values for variable 𝑋𝑖.
o In many cases the domain is assumed to be the same for all variables

• Set of constraints 𝐶 = {𝑐𝑖 = (scope𝑖, rel𝑖)|𝑖 = 1, … , ℎ}
o scope𝑖: subset of 𝑋, the variables that are constrained by 𝑐𝑖
o rel𝑖: is a relation and tells us which simultaneous assignments of values to variables

in scope𝑖 are allowed.

State: defined by an assignment of values to some or all of the variables.
Assignment can be:

• Consistent: it does not violate any constraints

• Complete: every variable is assigned

• Partial: only some of the variables are assigned
Solution: a consistent and complete assignment

22

Constraint graph: nodes are variables, arcs are constraints

CSP solvers are faster than state-space searchers because the CSP solver can quickly eliminate large
parts of the search space.

Types of variable:

• Discrete variables
o Finite domains: 𝑛 variables, domain size 𝑑

(e.g., variables WA, NT, Q, NSW, V, SA, T in the map coloring problem and each
variable has the domain Di = {red, blue, green})

o Infinite domains: integers, strings, etc.
(e.g., job scheduling, variables are start/end days for each job n constraints: StartJob1
+ 5 ≤ StartJob3)

• Continuous variables: common in the real world problems, studied in the field of operations
research.

Types of constraints:

• Unary: involve a single variable
e.g., SA ≠ green

• Binary: involve pairs of variables
e.g., SA ≠ WA

• Higher-order: involve 3 or more variables

• Global: involve an arbitrary number of variables
e.g., Alldiff, which says that all of the variables involved in the constraint must have different
values.

Binary CSP: CSP where each constraint relates two Variables.
Any CSP can be converted into a CSP with only binary constraints.

Example of formulations:

23

3.2. Backtracking search
Standard search formulation:

• Initial state: the empty assignment {}

• Successor function: assign a value to an unassigned variable that does not conflict with
current assignment. fail if no legal assignments

• State: partial assignment

• Goal test: the current assignment is complete
Every solution appears at depth 𝑛 with 𝑛 variables.
But if we use DFS, for a CSP with 𝑛 variables of domain size 𝑑 we are going to generate a tree with
𝒏! ∗ 𝒅𝒏 leaves even if only 𝑑𝑛 possible complete assignments. NOT feasible.

In CSPs, variable assignments are commutative, i.e., {WA = red then NT = green } same as { NT =
green then WA = red }
Thus, we need only consider a single variable at each level in the search tree, so the number of
leaves is 𝒅𝒏
Backtracking search: Depth-first search for CSPs with single variable assignments.
It chooses values for a not assigned variable at each level and backtracks when a variable has no
legal values left to assign.

Improving backtracking efficiency:

• Minimum remaining values (MRV) heuristic: chooses the variable with the fewest legal
values. It will fail earlier.

• Degree heuristic: chooses the variable involved in the most constraints with unassigned
variables. Reduce the branching factor.

• Given a variable, chooses the least constraining value: the one that rules out the fewest
values in the remaining Variables. Succeed first.

The ordering of values does not matter if all solutions needed and no solution, because we have to
consider every value.

24

Chronological backtracking: Backtrack to the previous variable and try another value.

Backjumping: Backtrack to a variable that might fix the problem.
The set of these variables is called the conflict set.
Backtrack to the most recent variable in the conflict set.
Example:

• Assume variable ordering Q, NSW , V , T , SA, WA, NT

• The conflict set for SA is {Q, NSW, V}

• We jump over T and try a new value for V

No-good: To avoid redundant work (To avoid running into the same problem again)

• Constraint learning: finding a minimum set of variables from the conflict set that cause the
problem. This set of variables with their corresponding values is called no-good.

• Record the no-good by adding a new constraint to the CSP

Forward checking: Keep track of remaining legal values for unassigned variables and Terminate
search when a variable has no legal values.

Propagates information from assigned to unassigned variables, but doesn't provide early detection
for all failures, example:

25

3.3. Consistency techniques
They remove from domain variables values that cannot appear in the final solution.

Constraint propagation: Uses constraints to reduce the number of legal values for a variable, this
can reduce the legal values for another variable.

• May be interleaved with search.

• May be done as a preprocessing step, before search starts.

• Sometimes it can solve the whole problem, so no search is Required.

• By enforcing local consistency in each part of the constraint graph, so inconsistent values
are eliminated in graph. There are different types of local consistency.

Node consistency: A variable (corresponding to a node in the CSP network) is node-consistent if all
the values in the variable’s domain satisfy the variable’s unary constraints.
A CSP network is node-consistent if every variable in the network is node-consistent.

Unary constraints can be eliminated by running node consistency.
All n-ary constraints can be transformed into binary ones.
So, we will consider CSPs with only binary constraints.

Arc consistency: A variable is arc-consistent if every value in its domain satisfies the variable’s binary
constraints.
Formally:

• Assume there is a binary constraint between 𝑋𝑖 and 𝑋𝑗,

• 𝑋𝑖 is arc consistent with respect to 𝑋𝑗 iff for every value 𝑥 for 𝑋𝑖, there is some allowed 𝑦 for

𝑋𝑗 that satisfies the binary constraint between 𝑋𝑖 and 𝑋𝑗

If a variable 𝑋 loses a value, neighbors of 𝑋 need to be rechecked.
Arc consistency detects failure earlier than forward checking.
Can be run as a preprocessor or after each assignment.

26

AC-3 Algorithm: maintains a queue of arcs. Initially contains all arcs of the CSP. Then one is

arbitrarily extracted (𝑋𝑖, 𝑋𝑗) so that 𝑋𝑖 becomes arc consistent respect to 𝑋𝑗. If this doesn’t change

the domain 𝐷𝑖, the algorithm continues with the next arc of the queue, otherwise, it adds to the
queue all arcs (𝑋𝑘, 𝑋𝑖) where 𝑋𝑘 is a neighbor of 𝑋𝑖. If 𝐷𝑖 remains empty the problem has not
solution, otherwise the algorithm continues to check the arcs until the queue is empty.

For binary CSPs

• 𝑛: number of variables

• 𝑐: number of binary constraints (arcs)

• 𝑑: domain size
Time: 𝑂(𝑐𝑑3)
Each arc (𝑋𝑘, 𝑋𝑖) inserted in the queue only 𝑑 times because 𝑋𝑖 has at most d values to delete.
Checking consistency of an arc can be done in 𝑂(𝑑2) time. Thus, 𝑂(𝑐𝑑3) total worst-case time.

In general, AC prunes the search space => equivalent easier problem.

After applying AC-3:

• either every arc is arc-consistent or

• some variable has an empty domain, indicating that the CSP cannot be solved.

Path consistency (PC): A two-variable set {𝑋𝑖, 𝑋𝑗} is path-consistent with respect to a third variable

𝑋𝑚 if

• ∀ assignment {𝑋𝑖 = 𝑎, 𝑋𝑗 = 𝑏} consistent with the constraints on {𝑋𝑖, 𝑋𝑗}

• ∃ assignment to 𝑋𝑚 that satisfies:
o the constraints on {𝑋𝑖, 𝑋𝑚} and

o the constraints on {𝑋𝑚, 𝑋𝑗}

This is called path consistency since it is like to consider a path from 𝑋𝑖 to 𝑋𝑗 with 𝑋𝑚 in the middle.

Path consistency does not guarantee that all the constraints among the variables on the path are
satisfied. Only the constraints between the neighboring variables must be satisfied.

27

3.4. Local search
Assume an assignment is inconsistent.
Next assignment can be constructed in such a way that constraint violation is smaller.

• Only “small” changes (local steps) of the assignment are allowed.

• Next assignment should be “better” than previous.

• better = more constraints are satisfied.
Assignments are not necessarily generated systematically, we lose completeness, but we
(hopefully) get better efficiency.

Search space: set of all complete variable assignments.
Set of solutions: subset of the search space. All complete assignments satisfying all the constraints.
Neighborhood relation: indicating what assignments can be reached by a search step given the
current assignment during the search procedure.
Evaluation function: mapping each assignment to a real number representing “how far the
assignment is from being a solution”.
Initialization function: returns an initial position given a possibility distribution over the
assignments.
Step function: Given an assignment, its neighborhood, and the evaluation function. Returns the new
assignment to be explored by the search.
Set of memory states (optional): holding information about the state of the search mechanism.
Termination criterion: stopping the search when satisfied.

Local search for CSPs:

• Neighborhood of an assignment: all assignments differing on one value of one variable.

• Evaluation function: mapping each assignment to the number of constraints it violates.

• Initialization function: returns an initial assignment chosen Randomly.

• Termination criterion: if a solution is found or if a given number of search steps is exceeded.
The different algorithms are characterized by the step function and use of memory.
Local search is used to eliminate violated constraints.
Heuristic for choosing a new value for a variable: value that results in the minimum number of
conflicts with other variables.

Min-Conflicts
Conflict set (of an assignment): set of variables involved in some constraint that assignment is
violating.
Min-conflict LS procedure:

• Starts at a randomly generated assignment.

• At each state of the search
o Selects a variable from the current conflict set.
o Selects a value for that variable that minimizes the number of violated constraints.

• If multiple choices: choose one randomly
o neighbourhood = different values for the selected variable
o neighbourhood size = (d-1)

The evaluation function can have:

• local minimum: a state that is not minimal and there is no state with better evaluation in its
neighborhood

28

• strict local minimum: a state that is not minimal and there are only states with worse
evaluation in its neighborhood.

• global minimum: the state with the best evaluation

• plateau: a set of neighboring states with the same evaluation

Escaping local minima: A local search procedure may get stuck in a local Minima.
Techniques for preventing stagnation:

• Restart
o Re-initialize the search after MaxSteps (non-strictly improving) steps
o New assignment chosen randomly
o Can be combined both with hill-climbing and Minconflicts
o It is effective if MaxSteps is chosen correctly and often it depends on the instance.

• Allowing non improving steps: random walk
A new assignment from the neighborhood is selected randomly (e.g., the value is chosen
randomly). Such technique can hardly find a solution, so it needs some guidance.
Can be combined with the heuristic guiding the search via probability distribution:

o p: probability of using the random walk (noise setting)
o (1-p) : probability of using the heuristic guide.
o Min-conflicts random walk

• Changing the neighborhood: tabu search
o Being trapped in local minimum can be seen as cycling. To avoid cycles:
o Remember already visited states and do not visit them again: memory consuming

(too many states)
o It is possible to remember just a few last states: Prevents “short” cycles.
o Tabu list = a list of forbidden states. Has a fix length 𝑘 (tabu tenure). “old” states are

removed from the list when a new state is added. State included in the tabu list is
forbidden (it is tabu)

• Constraint weighting: Can help concentrate the search on important constraints.
Each constraint is given a numeric weight (initially all 1)
At each step of the search:

o We choose a variable/value pair to change with lowest total weight of all violated
constraints.

o Weights are then adjusted by incrementing the weight of each constraint violated by
the current assignment.

29

3.5. Structure of the problems

Problem structure (constraint graph) can be used to find solutions quickly.
To deal with real world problems we decompose them into independent subproblems.
Independence can be obtained by finding connected components of the constraint graph.

• Each component corresponds to a subproblem 𝐶𝑆𝑃𝑖

• If assignment 𝑆𝑖 is a solution of 𝐶𝑆𝑃𝑖 then ⋃ 𝑆𝑖𝑖 is a solution of ⋃ 𝐶𝑆𝑃𝑖𝑖
Decomposition is important because without it the work is 𝑂(𝑑𝑛) instead of 𝑂(𝑑𝑐𝑛/𝑐) linear.

A constrained graph is a tree when any two variables are connected by only one path.
A CSP is defined to be directed arc-consistent (DAC) under an ordering of variables 𝑋1, 𝑋2, … , 𝑋𝑛 iff
every 𝑋𝑖 is arc-consistent with each 𝑋𝑗 for 𝑗 > 𝑖

Any tree-structured CSP can be solved in time linear in the number of variables.
If the CSP graph is a tree, it can be solved in 𝑂(𝑛𝑑2), 𝑛 variables, with 𝑑 values in each domain
To solve a tree-structured CSP:

• Pick any variable to be the root of the tree

• Choose an ordering of the variables such that each variable appears after its parent in the
tree (topological sort)

• Make this graph directed arc-consistent (𝑂(𝑛𝑑2),)

• Follow the list of variables starting from the root and choose any remaining value
DAC guarantees that for any value we choose for the parent, there will be a valid value left to choose
for the child.

30

Amost tree-structured: Reduce the graph structure to a tree assigning values to some variables.
Cutset Conditioning:

• Choose a subset 𝑆 of the CSPs variables such that the constraint graph becomes a tree after
removal of 𝑆 (𝑆 is called a cycle cutset)

• For each possible assignment of variables in 𝑆 that satisfies all constraints on 𝑆:
o Remove from the domains of the remaining variables any values that are inconsistent

with the assignment for 𝑆
o If the remaining CSP has a solution, return it together with the assignment for 𝑆

Tree decomposition: Decompose problem into a set of connected sub-problems, where two sub-
problems are connected when they share a constraint.
Solve sub-problems independently and combine solutions.

• If a sub-problem has no solution the entire problem has no solution

• If we can solve all the subproblems we construct a global solution
o Consider each sub-problem as new “mega-variable”

Domain of each mega-variable: all the solutions to the sub-problem
o Then, solve the constraints that connect the subproblems by using tree CSP solver to

find an overall solution with identical values for the same Variable.

Tree decomposition must satisfy the following conditions:

• Every variable of the original CSP appears in at least one sub-problem.

• If two variables are connected by a constraint in the original CSP à they must appear with
their constraint in at least one subproblem.

• If a variable appears in some subproblems it must have the same value in every subproblem.

A constraint graph allows for several tree decompositions.
Aim: to select decomposition with the subproblems as small as possible

Tree width of a tree decomposition = 𝑠 − 1, where 𝑠 is the size of largest sub-problem
Tree width of a graph 𝒘 = the minimum tree width among all its tree decompositions.
If a graph has tree-width 𝑤 and we know the corresponding tree decomposition, Then we can solve
the problem in 𝑂(𝑛𝑑𝑤+1)
CSPs with constraint graph with a bounded tree width can be solved in polynomial time.
Finding a tree decomposition with minimal tree width is NP-hard (but some heuristic methods work
well in practice)

31

Summary of CSP:

• CSPs are a special kind of search problem:
o states are value assignments.
o goal test is defined by constraints.

• Backtracking = DFS with one variable assigned per node.
Other intelligent backtracking techniques possible

• Variable/value ordering heuristics can help dramatically.

• Constraint propagation prunes the search space.

• Tree structure of CSP graph simplifies problem significantly.

• CSPs can also be solved using local search.

32

3.6. Soft Constraints satisfaction problems
Used to model preferences.
Soft constraint: a classical constraint, where each assignment of values to its variables has an
associated preference value from a (totally or partially ordered) set called c-semiring (constraint-
semiring). This set has two operations, which makes it similar to a semiring.

Soft CSP: is a set of soft constraints over a set of variables based on a specific c-semiring:

〈𝑨, +,×, 𝟎, 𝟏〉
Solution of a Soft CSP: complete assignment. One value for each variable.
Preference value of a solution (global evaluation): By combining (via ×) the preferences of the
partial assignments given by the constraints.

General framework for soft CSPs: based on a c-semiring structure that is a tuple 〈𝑨, +,×, 𝟎, 𝟏〉

• 𝑨: set that specifies the preference values to be associated with each tuple, i.e., with each
assignment of values of the variables.

• +, ×: two semiring operations
o + model constraint projection
o × model constraint combination

• 𝟎: worst preference value (0 ∈ 𝐴)

• 𝟏: best preference values (1 ∈ 𝐴)

3.6.1. C-semiring framework for Soft CSPs

The c-semiring framework for soft CSPs:

• Variables 𝑋 = {𝑋1, … , 𝑋𝑛}

• Domains 𝐷 = {𝐷(𝑋1), … , 𝐷(𝑋𝑛)}

• C-semiring 𝑆 = 〈𝐴, +,×, 0, 1〉
o 𝐴 set of preferences
o + additive operator: induces the ordering ≤𝑆 over 𝐴 defined as follows:

𝒂 ≤𝑺 𝒃 iff 𝒂 + 𝒃 = 𝒃
(+ is idempotent, commutative, associative, unit element 0)

o × multiplicative operator: combines preferences.
(× is commutative, associative, unit element 1, absorbing element 0)

o 0,1 ∈ 𝐴, they are bottom and top element.
o × distributes over +
o + and × are monotone on ≤𝑆:

▪ 𝑎 ≤𝑆 𝑏 ⇒ 𝑎 + 𝑐 ≤𝑆 𝑏 + 𝑐
▪ 𝑎 ≤𝑆 𝑏 ⇒ 𝑎 × 𝑐 ≤𝑆 𝑏 × 𝑐

o Intensive property: ∀𝑎, 𝑏 ∈ 𝐴 𝑎 × 𝑏 ≤𝑆 𝑎. It means that combining more
constraints leads to a worse result.

33

o 〈𝐴, ≤𝑆〉 is a lattice:
▪ + is least upper bound operator.
▪ × is greatest lower bound operator if 𝑥 is idempotent.

o When ≤𝑆 is a total order and × is idempotent: if 𝑎 ≤𝑆 𝑏 then 𝑎 + 𝑏 = 𝑏 and 𝑎 × 𝑏 =
𝑎 (+=max, ×=min)

Soft constraint: a pair 𝑐 = 〈𝑓,con〉 where:

• Scope: con = {𝑋1
𝑐, … , 𝑋𝑘

𝑐} subset of the set of variables 𝑋

• Preference function:
o 𝑓: 𝐷(𝑋1

𝑐) × … × 𝐷(𝑋𝑘
𝑐) → 𝐴

o (𝑣1, … , 𝑣𝑘) → 𝑝 preference value
o 𝑓 is a function that associate to every assignment of values (𝑣1, … , 𝑣𝑘) in con a

specific preference value 𝑝 taken from the set of preferences 𝐴

Hard constraint: a soft constraint where for each tuple (𝑣1, … , 𝑣𝑘)

• 𝑓(𝑣1, … , 𝑣𝑘) = 1 the tuple is allowed.

• 𝑓(𝑣1, … , 𝑣𝑘) = 0 the tuple is forbidden.

Fuzzy constraint satisfaction problems (FCSPs)

• Fuzzy c-semiring: 〈𝐴 = [0,1], += max,×= min, 0,1〉

• Preference values between 0 and 1

• Higher values denote better preferences.
o 0 is the worst preference.
o 1 is the best preference.

• Combination is taking the smallest value.

• optimization criterion = maximize the minimum preference

S’ is better than S

34

Weighted constraint satisfaction problems (WCSPs)

• Weighted c-semiring: 〈[0, +∞], += max,×= +,0 = +∞, 1 = 0〉

• Preference values are costs between 0 and +∞

• Lower costs are better:
o +∞ is the worst cost.
o 0 is the best cost.

• Combination is taking the sum of the costs.

• optimization criterion = minimize the sum of costs

• Useful in all settings where costs apply.

A soft CSP induces an ordering over the solutions, from the ordering ≤𝑆 of the c-semiring.

• If ≤𝑆 is a total order => total order over solutions (possibly with ties)

• If ≤𝑆 is a partial order => total or partial order over solutions (possibly with ties)
Any ordering can be obtained.

Instances of semiring-based soft constraints: Each instance is characterized by a c-semiring
〈𝐴, +,×, 0, 1〉

• Classical constraints: 〈{0,1}, 𝑂𝑅, 𝐴𝑁𝐷, 0, 1〉 Satisfy all constraints.

• Fuzzy constraints: 〈[0,1],max,min, 0, 1〉 Maximize the minimum preference.

• Weighted constraints: 〈ℝ ∪ +∞,min, +, +∞, 0〉 Minimize the sum of the costs.

• Probabilistic constraints: 〈[0,1],max,×, 0, 1〉 Maximize the joint probability.

• Multi-criteria problems: One c-semiring for each criteria.
o Given 𝑛 c-semirings 𝑆𝑖 = 〈𝐴𝑖, +𝑖,×𝑖, 0𝑖 , 1𝑖〉 we can build the c-semiring:

𝑆 = 〈〈𝐴1, … , 𝐴𝑛〉, +,×, 〈01, … , 0𝑛〉, 〈11, … , 1𝑛〉〉
+ and × obtained by pointwise application of +𝑖 and ×𝑖 on each c-semiring.

o Each assignment is associated with a tuple of preference values (𝑝1, … , 𝑝𝑛)
o The ordering over the solutions may be a partial order
o Cartesian product of c-semirings.

35

3.6.2. Fundamental operations with soft constraints

Projection: eliminate one or more variables from a constraint obtaining a new soft constraint
preserving all the information on the remaining variables.
Given:

• a soft constraint 𝑐 = 〈𝑓,con〉

• a set 𝐼 ⊂ 𝑋 of variables
the projection of 𝒄 over 𝑰 is the constraint 𝑐|𝐼 = 〈𝑓′,con'〉 where:

• con' = 𝐼 ∩ con
• 𝑓′(𝑡′) = +(𝑓(𝑡)) over tuples of values 𝑡 s.t. 𝑡|𝐼∩con = 𝑡′

𝑓′ associates to each tuple of the remaining variables a preferences value which is the sum
of the preference values associated by the original constraints to all the extension of this
tuple over the eliminated variables.

Combination: combine two or more soft constraints obtaining a new soft constraint “synthesizing”
all the information of the original ones.
Given two soft constraints:

• 𝑐1 = 〈𝑓1, con1〉
• 𝑐2 = 〈𝑓2, con2〉

their combination is the constraint 𝑐1 × 𝑐2 = 〈𝑓′,con'〉, where:

• con' = con1 ∪ con2
• 𝑓′(𝑡′) = 𝑓1(𝑡|con1

) × 𝑓2(𝑡|con2
)

𝑓′ associates to each tuple of the domain values for these variables, a preference value that
is obtained by multiplying the preference values associated by the original sub-constraints
to the appropriate sub-tuples.

36

Find an optimal solution (Ex.: branch and bound + constraint propagation)
Is 𝑡 an optimal solution? (we have to find the optimal preference level)
Is 𝑡 better than 𝑡’? Linear in the number of constraints (compute the two pref. levels and compare
them)

3.6.3. Systematic search: Branch and Bound
Visit each assignment that may be a solution, skip only assignments that are shown to be dominated
by others.
Search tree to represent the space of all assignments.

Lower bound (𝒍𝒃)= preference of best solution so far (0 of the semiring, at the beginning)
Upper bound (𝒖𝒃) for each node: upper bound to the preference of any assignment in the subtree
rooted at the node. = combination (×) of preferences from constraints on assigned variables.
If 𝒖𝒃 is worst than 𝒍𝒃 => prune subtree

37

Incomplete soft constraint problems:

• SCSPs with some missing preferences

• New notions of optimal solutions

• Idea: interleaving search and preference elicitation

38

39

4. Multi-agent decision making

4.1. Preferences
Preferences:

• are orderings over possible options.

• can model levels of acceptance, or costs.

• are tolerant constraints.
Constraints are strict requirements that must be satisfied.
Constraints and preferences may be present in the same problem.

Kind of preferences:

• Unconditional: I prefer taking the bus

• Conditional: I prefer taking the bus if it’s raining

• Multi-agent: I like blue, my husband likes green, what color for the new car?

• Quantitative: Numbers or ordered set of objects. My preference for ice cream is 0.8, and for
cake is 0.6

• Qualitative: Pairwise comparisons, Ice cream is better than cake

Ways to model preferences:

• Soft constraints: for modeling quantitative and unconditional preferences. (Ex., My
preference for ice cream is 0.8, and for cake is 0.6)

• CP-nets: for modeling qualitative and conditional preferences. (Ex., Red wine is better than
white wine if there is meat)

Collective decision making:

• Several agents

• Common set of possible decisions

• Each agent has its preferences over the possible decisions.

• Goal: to choose one of the decisions, based on the preferences of the agents
or a set of decisions
or a ranking over the decisions

To compute a collective decision:

• Let the agents vote by expressing their preferences over the possible decisions.

• Aggregate the votes to get a single decision.

40

4.2. Voting theory (social choice)
• Agents = Voters

• Decisions = Candidates

• Preferences

• Goal: to choose one candidate (the winner), based on the voters’ preferences. Also many
candidates, or ranking over candidates

• Voting Rules (functions) to achieve the goal.

Voting rules:

• Plurality:
o Voting: each voter provides the most preferred decision
o Selection: the decision preferred by the largest number of voters

• Majority: like plurality, over 2 options

• Approval: (m options)
o Voting: each voter approves any number of options
o Selection: option with most votes

• Borda:
o Voting: each voter provides a rank over all options
o Score of an option: number of options that it dominates.
o Selection: option with greatest sum of the scores

Desirable properties of voting rules:

• Unanimity (efficiency): If all voters have the same top choice, it is selected.

• Non-dictatorship: There is no dictator (Dictator: voter such that his top choice always wins,
regardless of the votes of other voters)

• Non-manipulability: There is no incentive for agents to misrepresent the preferences.

Impossibility results:

• Arrow’s theorem: Totally ordered preferences. It is impossible to find a voting rule with
some desirable properties including both unanimity and non-dictatoriality

• Gibbard-Sattherwaite’s theorem: Totally ordered preferences. it is impossible to have a
reasonable voting rule that is both non-dictatorial and non-manipulable.

These impossibility results holds also when we allow partially ordered preferences.

41

4.3. Multi-agent systems
In multi-agent AI scenarios, we usually have:

• Incomparability

• Uncertainty, vagueness, preference elicitation

• Computational concerns

• Large set of decisions (candidates) w.r.t. number of agents (voters)

• Combinatorial structure for the set of decisions (candidates)

Incomparability:

• Preferences do not always induce a total order over the options.

• Preferences may induce a partial order where some options are incomparable.

• Some options are naturally incomparable.
Eg., it may be easy to compare two apartments, but it may be difficult to compare an
apartment and a house, thus we say they are incomparable.

• An agent may have several possibly conflicting preference criteria he wants to follow.
Eg., a cheap and slow car is incomparable w.r.t. an expensive and fast car.

• Many AI formalisms to model preferences allow for partial orders (eg., soft constraints)

Uncertainty, vagueness:

• Missing preferences
o Too costly to compute them
o Privacy concerns
o Ongoing elicitation process

• Imprecise preferences
o Preferences coming from sensor data.
o Too costly to compute the exact preference.
o Estimates

Aim in AI: Find compact preference formalisms and solving techniques to model and solve problems
with missing or imprecise preferences.

Preference elicitation

• Some preferences may be missing.

• Time consuming, costly, difficult, to elicit all preferences.

• We want to terminate preferences elicitation as soon as a winner fixed.

Computational concerns:

• We would like to avoid very costly ways to: Model agents’ preferences, Compute the winner,
Reason with the agents’ preferences.

• On the other hand, we need a computational barrier against bad behaviors (such as
manipulation)

Large set of candidates: In AI scenarios, usually

• the set of decisions (candidates) is much larger than

• the set of agents expressing preferences over the decisions.

Combinatorial structure for the set of decisions: need to Find compact preference formalism to
express agents’ preferences.

42

4.4. Formalism to model preferences

Soft constraint formalism (the c-semiring framework)

• The agent expresses his preferences over partial assignments of the decision variables.

• From these preferences the preference ordering over the solution space is generated
Soft constraints model quantitative and unconditional preferences but it is difficult to elicitate
quantitative preferences from the user.

CP-net formalism: compactly represent qualitative and conditional preferences.

• Variables {𝑋1, … , 𝑋𝑛} with domains

Independent variable: For each variable there is a total order over its values

𝑋 = 𝑣1 > 𝑋 = 𝑣2 > ⋯ > 𝑋 = 𝑣𝑘
Dependent variable: a total order for each combination of values of some other variables
(conditional preference table, aka CP-table)

• 𝑌 = 𝑎, 𝑍 = 𝑏: 𝑋 = 𝑣1 > 𝑋 = 𝑣2 > ⋯ > 𝑋 = 𝑣𝑘
• 𝑋 depends on 𝑌 and 𝑍 (parents of 𝑋)

• Graphically: directed graph over 𝑋1, … , 𝑋𝑛

• Possibly cyclic

CP-net induces an ordering over solutions.

Worsening flip: changing the value of a variable in a way that is less preferred in some statement.

An outcome 𝑶𝟏 is preferred to 𝑶𝟐 iif there is a sequence of worsening flips from 𝑂1 to 𝑂2.
Optimal outcome: if no other outcomes is preferred.

43

Finding an optimal solution in acyclic CP-nets: forward sweep algorithm.

• First consider independent variables: Assign them their most preferred values.

• Then consider dependent variables, that directly depend on the assigned variables: Assign
them their most preferred values that are consistent with the values previously assigned to
their parents.

• And so on until we assign a value to all the variables.

Soft constraints vs CP-nets:

• Different expressive power

• Different computational complexity for reasoning with them

Sequential Voting: Several voters, Decisions are made by several issues.
Main idea: Vote separately on each issue, but do so sequentially.
This gives voters the opportunity to make their vote for one issue depending on the decisions on
previous issues.

Apply sequential voting when agents express their preferences via soft constraint problems:
Assume the agents have: the same constraint graph, but different preference values.
For each variable:

• Compute an explicit profile over the variable domain.

• Apply a voting rule to this explicit profile => the rule will return a specific value that will be
assigned to this variable

• Add the information about the selected variable value.

44

45

5. Bayesian network

Network models to reason under uncertainty according to the laws of probability theory.
Is a simple graphical notation to represent the dependencies among variables and for compact
specification of any full joint probability distribution.

5.1. Syntax
• Directed acyclic graph

• set of nodes, one per variable

• set of oriented arcs. Where 𝑋 → 𝑌 means 𝑋 directly influences 𝑌. (X is parent of Y)

• For each node 𝑋𝑖, a conditional probability distribution given parents of 𝑋𝑖:

𝑃(𝑋𝑖|parents(𝑋𝑖))

The conditional distributions are represented as a conditional probability table (CPT) giving the
probability distribution over 𝑋𝑖 for each combination of parents values.

• Each row in a CPT contains the conditional probability of each node value for a conditioning
case, that is, for each possible combination of values for the parent nodes.

• For Boolean variables, once you know that the probability of a true value is 𝑝, the probability
of false must be 1– 𝑝, so we often omit the second number.

Example:

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call.
Sometimes it's set off by minor earthquakes. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Topology:

Compactness: Bayesian network are more compact representation than the full joint distribution

• CPT for a Boolean variable 𝑋𝑖 with 𝑘 Boolean parents has 2𝑘 rows for the combinations of
parents values

• Each row requires one number 𝑝 for 𝑋𝑖= true (since the number for 𝑋𝑖 = false is 1 − 𝑝)

• Assume there are 𝑛 Boolean variables

• If each variable has no more than 𝑘 parents

• Bayesian network can be specified by at most 𝒏 ∗ 𝟐𝒌 numbers

• The full joint distribution contains 𝟐𝒏 numbers

Semantics: The full joint distribution is defined as the product of the local conditional distributions:

𝑷(𝑿𝟏, … , 𝑿𝒏) = ∏ 𝑷(𝑿𝒊|parents(𝑿𝒊))

𝒏

𝒊=𝟏

46

Constructing Bayesian networks:

• Choose an ordering of variables 𝑋1, … , 𝑋𝑛

• For 𝑖 = 1 to 𝑛:
o Add 𝑋𝑖 to the network

o Select parents from 𝑋1, … , 𝑋𝑖−1 such that 𝑃(𝑋𝑖|parents(𝑋𝑖)) = 𝑃(𝑋𝑖|𝑋1, … , 𝑋𝑖−1)

This choice of parents guarantees:

𝑷(𝑿𝟏, … , 𝑿𝒏) = ∏ 𝑃(𝑋𝑖|𝑋1, … , 𝑋𝑖−1)

𝑛

𝑖=1

= ∏ 𝑷(𝑿𝒊|parents(𝑿𝒊))

𝒏

𝒊=𝟏

Parents of node 𝑋𝑖 should contain all those nodes in 𝑋1, … , 𝑋𝑖−1 that directly influence 𝑋𝑖

5.2. Inference in Bayesian Networks
We want to compute the posterior probability distribution for a set of query variables given some
observed event (observed event = an assignment of values to a set of evidence variables).
We assume one query variable.

• 𝑋 denotes the query variable.

• 𝐸 denotes the set of evidence variables 𝐸1, … , 𝐸𝑚

• 𝑒 is a particular observed event.

• 𝑌 denotes hidden variables 𝑌1, … , 𝑌𝑙 (that are the nonevidence, nonquery variables)

• Complete set of variables: 𝑋 = {𝑋} ∪ 𝐸 ∪ 𝑌

• Typical query: compute posterior probability distribution 𝑷(𝑿|𝒆) = 𝛼𝑃(𝑋, 𝑒) =
𝜶 ∑ 𝑷(𝑿, 𝒆, 𝒚)𝒚

𝛼: is a normalization constant.
Sum on all possible values of hidden variables 𝑌.

Example: compute the probability of intrusion (𝐵) knowing that John called (𝑗) and Mary called (𝑚).
𝑃(𝐵|𝑗, 𝑚)

5.2.1. Exact inference by enumeration
Slightly intelligent way to sum out variables from the full joint distribution without actually
constructing its explicit representation.
Query:

𝑃(𝐵|𝑗, 𝑚) = 𝛼𝑃(𝐵, 𝑗, 𝑚) = 𝛼 ∑ ∑ 𝑃(𝐵, 𝑒, 𝑎, 𝑗, 𝑚)

𝑎𝑒

Where 𝐵 is a query variable, 𝑗 and 𝑚 are evidence variables, 𝑎 and 𝑒 are hidden variables.
Rewrite full joint entries using product of CPT entries.
For simplicity, we do this just for Burglary = true:

= 𝛼 ∑ ∑ 𝑃(𝑏)𝑃(𝑒)𝑝(𝑎|𝑏, 𝑒)𝑃(𝑗|𝑎)𝑃(𝑚|𝑎)

𝑎𝑒

𝑃(𝑒) is not dependent of a so can be taken out.

= 𝛼𝑃(𝑏) ∑ 𝑃(𝑒)

𝑒

∑ 𝑃(𝑎|𝑏, 𝑒)𝑃(𝑗|𝑎)𝑃(𝑚|𝑎)

𝑎

𝑂(2𝑛) time complexity for 𝑛 Boolean variables

47

Evaluation tree

Enumeration is inefficient, there are repeated computations (first and third subtree).

5.2.2. Exact inference by variable elimination
Enumeration algorithm can be improved by eliminating repeated calculations.

𝑃(𝐵|𝑗, 𝑚) = 𝛼𝑃(𝐵, 𝑗, 𝑚) = 𝛼𝑃(𝑏) ∑ 𝑃(𝑒)

𝑒

∑ 𝑃(𝑎|𝑏, 𝑒)𝑃(𝑗|𝑎)𝑃(𝑚|𝑎)

𝑎

We are going to evaluate the expression from right to left remembering the intermediate results.

Each factor is a matrix indexed by the values of its argument variables.
Example:

• 𝑓4(𝐴) correspond to 𝑃(𝑗|𝑎) and 𝑓5(𝐴) corresponds to 𝑃(𝑚|𝑎), both depend just on 𝐴
because 𝐽 and 𝑀 are fixed.

• 𝑓3(𝐴, 𝐵, 𝐸) is a 2x2x2 matrix

o First element 𝑃(𝑎|𝑏, 𝑒) = 0.95
o …
o Last element 𝑃(¬𝑎|¬𝑏, ¬𝑒) = 1 − 𝑃(𝑎|¬𝑏, ¬𝑒) = 0.999

In terms of factors:

𝑃(𝐵|𝑗, 𝑚) = 𝛼𝑓1(𝐵) × ∑ 𝑓2(𝐸)

𝑒

× ∑ 𝑓3(𝐴, 𝐵, 𝐸) × 𝑓4(𝐴) × 𝑓5(𝐴)

𝑎

Evaluation:

•

48

•

•

Operations on factors:

• Pointwise product: two factors 𝑓1 and 𝑓2 yields a new factor 𝑓:
o The variables of 𝑓 are the union of the variables in 𝑓1 and 𝑓2
o The elements of 𝑓 are given by the product of the corresponding elements in the two

factors.

• Summing out a variable from a product of factors is done:

o by adding up the submatrices formed
o by fixing the variable to each of its values in turn

49

5.2.3. Complexity of Exact Inference
Complexity of exact inference depends on the type of network.

Singly connected networks (or polytree)

• Any two nodes are connected by at most one (undirected) path.

• Time and space complexity: linear in the size of the network (size = number of CPT entries)

• if the number of parents of each node is bounded by a constant =>linear in the number of
nodes

Multiply connected networks: Exponential time and space complexity in the worst case, even when
the number of parents per node is bounded.

In general exact inference is expensive. So approximate inference methods can be used.

Summary

• Bayesian networks (Topology + CPTs) = compact representation of joint distribution

• Exact inference: enumeration, variable elimination

50

51

6. Planning

Planning is about how an agent achieves its goals.

Assumptions:

• Agent’s actions are deterministic. The agent can predict the consequences of its actions.

• No exogenous events beyond the control of the agent that change the state of the world.

• The world is fully observable.

• Time progresses discretely from one state to the next

To reason about what to do, an agent must have:

• Goals

• A model of the world

• A model of the consequences of actions

Action:

• Partial function from states to states.
Partial means that not every action can be done in every state.
Eg., a robot cannot carry out the action to pick up a particular object if it is nowhere near the
object.

• Precondition of an action: specifies when the action can be done

• Effect of an action: specifies the resulting state

Example:

52

6.1. Representations

Explicit State-Space Representation (state-space graph)

• Explicitly enumerate all the states

• For each state specify all the actions possible in that state

• For each (state, action) specify the resulting state.
It’s a Bad representation:

• Usually too many states to consider

• Small changes to the model implies large change to the representation

• Modeling another feature means changing the whole representation
Eg., to model the level of power in the robot, so that it can recharge itself in the Lab every
state has to change.

Example:

Feature-Based Representation of Actions

• It models the possible actions in a state in terms of values of the features of the state, and
how feature values in the next state are affected by features values of the current state and
action.

• Is Feature-centric: for each feature, there are rules that specify its value in the state resulting
from an action.

• Precondition of an action: proposition that must be true to do the action.

• Rules: specify the value of each variable in the state resulting from an action
Body of the rules:

o Features values in the previous state
o Action carried out.

Rules have two forms:
o Causal rule specifies when a feature gets a new value.
o Frame rule specifies when a feature keeps its value.

Example:

53

STRIPS representation:

• Is action-centric: for each action, specifies the effect of the action.

• Features are divided in:
o Primitive features
o Derived features

Definite clauses determine the value of derived features from the values of the
primitive features in any given state.

• STRIPS is used to determine values of primitive features in a state based on the Previous
state and the Action taken by the agent.

• Idea: most things are not affected by a single action

• For each action, STRIPS models:
o When the action is possible
o What primitive features are affected by the action.
o The effect of an action relies on the STRIPS assumption: All of the primitive features

not mentioned in the description of the action stay unchanged.

• The STRIPS representation for an action:
o Precondition: set of assignments of values to features that must be true for the

action to occur.
o Effect: set of resulting assignments of values to those primitive features that change

as the result of the action.

Feature-based vs STRIPS

• Feature-based representation:
o more verbose than STRIPS representation
o more powerful than STRIPS representation:

▪ It can represent anything representable in STRIPS
▪ Can specify conditional effects whereas STRIPS cannot represent these

directly.
Conditional effect = an effect of an action that depends on the value of other
features

• STRIPS representation of a set of actions can be translated into the feature-based
representation.

54

6.2. Planning problem
Assumption: fully observable and deterministic world

Initial states: a value for each feature for the initial time
2 Kinds of goals:

• Achievement goal: proposition that must be true in final state.

• Maintenance goal: proposition that must be true in every state through which the agent
passes.

Other kinds of goals:

• Transient goals (that must be achieved somewhere in the plan but do not have to hold at
the end)

• Resource goals (such as wanting to minimize energy used)

Deterministic plan: sequence of actions to achieve a goal from a given starting state.
Deterministic planner: a problem solver that can produce a plan.
Input of a planner:

• Initial world description

• Specification of the actions available to the agent (preconditions, effects)

• Goal description

Planning problem can be seen as a path planning problem in the state-space graph where:

• Nodes are states.

• Arcs correspond to actions from one state to another.

• ∀ state 𝑠, there is an arc for each action 𝑎 such that:
o precondition of 𝑎 holds in state 𝑠
o resulting state does not violate a maintenance goal.

Plan: is a path from the initial state to a state that satisfies the achievement goal.
Forward planner searches the state-space graph from the initial state looking for a state that
satisfies a goal description. It can use any of the search strategies described in Chapter 2.
Example state-space graph:

Complexity of the search space:

• The complexity of the search space is defined by the forward branching factor of the graph

• The branching factor is the set of all possible actions at any state, which may be quite large

• When the domain becomes bigger, the branching factor increases and the search space
explodes.

• This complexity may be reduced by finding good heuristics.

Planning as a CSP: It is possible to convert a planning problem to a constraint satisfaction problem
(CSP). Thus one of the CSP methods can be used.

55

56

QUESTIONS FROM PAST EXAMS

You can find flashcards of those questions on: https://www.brainscape.com/p/3YF5P-LH-AUGGM

Agents

• Provide the definition of agent, agent function, and agent program.

• Indicare la differenza tra funzione agente e programma agente.

Search:

• Describe the simple problem-solving agent providing both the pseudocode and an informal
description.

• Provide the formal definition of search problem (describe its components), solutions, and
optimal solution in a search problem.

• Provide the formal definition of a solution in a search problem.

• Describe Breadth-first search and Depth-first search. What are the main differences
between them?

• EXERCISE: Considerare uno spazio degli stati dove lo stato iniziale è il numero 1 e ogni stato
k ha due successori: i numeri 2k e 2k+1. Disegnare la porzione di spazio degli stati per gli stati
da 1 a 7. Supponiamo che lo stato obiettivo sia lo stato 5. Elencare i nodi nell’ordine in cui
saranno visitati con Breadth-first search, Depth-limited search with limit 2, Iterative
deepening search.

• Describe greedy best-First search.

• Describe algorithm A*.

• What is the difference between A* and the greedy algorithm?

• Dare la definizione di euristica consistente e di euristica ammissibile.

• EXERCISE: Si consideri il seguente grafo, dove S `e lo stato iniziale e G `e lo stato goal. Il costo
di ciascun arco `e la sua etichetta. In tabella viene riportata la stima euristica della distanza
di ciascun nodo dal nodo goal G. Indicare l’ordine con cui la strategia di ricerca A* espande
i nodi alla ricerca di una soluzione e si mostri l’albero di ricerca espanso. In caso di più nodi
figli, a parità di altre condizioni, si espanda per primo quello il cui nome precede
alfabeticamente il nome degli altri figli. Mostrare la soluzione trovata. La funzione euristica
h(n) presentata in questo esercizio `e ammissibile? È consistente? Motivare le risposte.

• Describe hill climbing search providing both the pseudocode and an informal description.

• Descrivere l’algoritmo hill climbing. Spiegare per quali ragioni spesso l’hill climbing rimane
bloccato.

• Describe the local beam search algorithm.

Stable Matching Problems:

• EXERCISE: applicare algoritmo Gale Shapley. Qual è il matching risultante? Quali sono le
proprietà del matching ottenuto? Il matching {(R1; T2); (R2; T1); (R3; T3)} ̀ e stabile? Motivare
la risposta.

• EXERCISE: In this particular stable matching problem is there a man or woman that can profit
from lying?

• What is a stable matching problem? What is a matching? What does it mean that a matching
is stable?

• Dare la definizione di blocking pair.

https://www.brainscape.com/p/3YF5P-LH-AUGGM

57

• Describe Gale-Shapley algorithm (GS).

CSP:

• Provide the formal definition of a constraint satisfaction problem (CSP)

• Dare la definizione di soluzione di un CSP

• Che cosa `e un vincolo globale? Fare un esempio.

• Constraints involving more than three variables are more expressive than constraints
involving only two variables? Motivate your answer.

• Descrivere l’euristica MRV (minimum remaining values) per i problemi di soddisfacimento
di vincoli. Tale euristica viene anche chiamata euristica First-Fail.

• Descrivere l’euristica di grado (degree heuristic).

• Assume there is a binary constraint between the variables X and Y. What does it mean that
X is arc consistent w.r.t. Y?
ANS: It means that for each value x in the domain of X, there is some value y in the domain
of Y that satisfies the constraint between X and Y.

• How can we enforce X to be arc-consistency w.r.t. Y?
ANS: Remove all the values x in the domain of X for which there is no corresponding value
y in the domain of Y that satisfies the constraint between X and Y.

• What are the possible outcomes of the arc consistency algorithm? Explain also how these
outcomes are related to the set of the solutions.
ANS:

o At least one domain could be empty, in which case there is no solution
o Each domain could have a single value, in which case there is a unique solution
o Or some domains could have multiple values

• Consider the case where the arc consistency algorithm applied to a CSP terminates and some
domains have multiple values. Is there guaranteed to be a solution? Justify the answer.

• Provide an example of a constraint satisfaction problem which is arc consistent but with no
solution.

• What does it mean that a two-variable set {Xi;Xj} in a CSP is path-consistent with respect to

a third variable Xm.

• Indicare quando il grafo dei vincoli `e un albero.

• Dare la definizione formale di directed arc consistency.

• Che cosa `e la tree width di una tree decomposition?

• EXERCISE: Considerare un problema di colorazione della mappa… Disegnare il grafo dei
vincoli e mostrare come cambiano i domini delle variabili quando applichiamo Forward
checking a questo problema dopo aver assegnato alla variabile X1 il valore 1.

• EXERCISE: Define a map coloring problem with 5 variables where each variable can have
values in D = red; blu; green. Apply backtracking with forward checking on this problem.
Apply arc consistency.

58

Soft-CSP:

• Provide the formal definition of soft constraint.

• What is a soft constraint satisfaction problem (SCSP)? What is an optimal solution of an
SCSP?

• EXERCISE: Si consideri un weighted…. Definire il vincolo weighted ottenuto combinando tutti
i vincoli presenti in figura. Assumendo che il vincolo weighted ottenuto sia l’unico vincolo di
un weighted CSP, indicare la soluzione ottima (o le soluzioni ottime). Giustificare la risposta.

• EXERCISE: Si consideri un fuzzy CSP… Disegnare il vincolo fuzzy ottenuto combinando tutti i
vincoli presenti in figura mostrando tutti i passaggi. Assumendo che il vincolo ottenuto sia
l’unico vincolo di un fuzzy CSP, indicare la soluzione ottima (o le soluzioni ottime) e il valore
di preferenza di una soluzione ottima. Giustificare la risposta.

Multi agent decision making:

• Quale tipo di preferenze possono modellare i vincoli soft? Quale tipo di preferenze possono
modellare le CP-net?

• Describe how Plurality rule works.

• Describe how Borda rule works. Is it possible to manipulate it?

• What are the main differences between soft constraint formalism and CP-nets?

• What is a conditional preference table in a CP-net?

• Descrivere l’algoritmo per trovare una soluzione ottima in una CP-net aciclica.

Bayessian networks:

• Describe the syntax and the semantics of a Bayesian network.

• What is a conditional probability table in a Bayesian network?

• What are the similarities and the differences between Bayesian networks and CP-nets?

• EXERCISE: Si consideri la rete bayesiana indicata in figura. Calcolare il valore di P(a; b;-c; d;-
e).

• EXERCISE: Consider the BN shown in the figure below….. compute the probability P(d|b) by
enumeration (you don’t need to compute the normalization factor alpha).

Planning:

• What is a causal rule? What is a frame rule?

• The STRIPS representation for an action consists of what?
ANS:

o Preconditions - a set of assignments of values to variables that must be true for the
action to occur

o Effects - a set of resulting assignments of values to those variables that change as
the result of the action

• What is the STRIPS assumption?
ANS: All of the variables not mentioned in the description of an action stay unchanged when
the action is carried out.

Other:

• What is the difference between supervised and unsupervised learning?

• What is k-fold cross validation?

• A Turing machine passes the Turing test if it can discriminate between a machine and a
human through interaction? Motivate your answer.

	1. Agents
	1.1. Agents and environments
	1.2. Agent types

	2. Solving problems by searching
	2.1. Problem-solving agents
	2.2. Problem formulation
	2.3. Uninformed search algorithms
	2.3.1. Infrastructure for search algorithms

	2.4. Uninformed Search strategies
	2.5. Informed search algorithms
	2.6. Local search algorithms
	2.7. Stable matching problem

	3. Constraint satisfaction problems
	3.1. Problem Definition
	3.2. Backtracking search
	3.3. Consistency techniques
	3.4. Local search
	3.5. Structure of the problems
	3.6. Soft Constraints satisfaction problems
	3.6.1. C-semiring framework for Soft CSPs
	3.6.2. Fundamental operations with soft constraints
	3.6.3. Systematic search: Branch and Bound

	4. Multi-agent decision making
	4.1. Preferences
	4.2. Voting theory (social choice)
	4.3. Multi-agent systems
	4.4. Formalism to model preferences

	5. Bayesian network
	5.1. Syntax
	5.2. Inference in Bayesian Networks
	5.2.1. Exact inference by enumeration
	5.2.2. Exact inference by variable elimination
	5.2.3. Complexity of Exact Inference

	6. Planning
	6.1. Representations
	6.2. Planning problem

	QUESTIONS FROM PAST EXAMS

